Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 872536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935935

RESUMO

The complement system is a part of the innate immune system, where it labels intruding pathogens as well as dying host cells for clearance. If complement regulation is compromised, the system may contribute to pathogenesis. The proteolytic fragment C3b of complement component C3, is the pivot point of the complement system and provides a scaffold for the assembly of the alternative pathway C3 convertase that greatly amplifies the initial complement activation. This makes C3b an attractive therapeutic target. We previously described a nanobody, hC3Nb1 binding to C3 and its degradation products. Here we show, that extending the N-terminus of hC3Nb1 by a Glu-Trp-Glu motif renders the resulting EWE-hC3Nb1 (EWE) nanobody specific for C3 degradation products. By fusing EWE to N-terminal CCP domains from complement Factor H (FH), we generated the fusion proteins EWEnH and EWEµH. In contrast to EWE, these fusion proteins supported Factor I (FI)-mediated cleavage of human and rat C3b. The EWE, EWEµH, and EWEnH proteins bound C3b and iC3b with low nanomolar dissociation constants and exerted strong inhibition of alternative pathway-mediated deposition of complement. Interestingly, EWEnH remained soluble above 20 mg/mL. Combined with the observed reactivity with both human and rat C3b as well as the ability to support FI-mediated cleavage of C3b, this features EWEnH as a promising candidate for in vivo studies in rodent models of complement driven pathogenesis.


Assuntos
Complemento C3 , Complemento C3b , Animais , Ativação do Complemento , C3 Convertase da Via Alternativa do Complemento , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Fibrinogênio/metabolismo , Humanos , Ratos
2.
Immunology ; 161(1): 66-79, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583419

RESUMO

Some human antibodies may paradoxically inhibit complement activation on bacteria and enhance pathogen survival in humans. This property was also claimed for IgG antibodies reacting with terminal galactose-α-1,3-galactose (Galα3Gal; IgG anti-αGal), a naturally occurring and abundant antibody in human plasma that targets numerous different pathogens. To reinvestigate these effects, we used IgG anti-αGal affinity isolated from a pool of normal human IgG and human hypogammaglobulinaemia serum as a complement source. Flow cytometry was performed to examine antibody binding and complement deposition on pig erythrocytes, Escherichia coli O86 and Streptococcus pneumoniae serotype 9V. Specific nanobodies were used to block the effect of single complement factors and to delineate the complement pathways involved. IgG anti-αGal was capable of activating the classical complement pathway on all the tested target cells. The degree of activation was exponentially related to the density of bound antibody on E. coli O86 and pig erythrocytes, but more linearly on S. pneumoniae 9V. The alternative pathway of complement amplified complement deposition. Deposited C3 fragments covered the activating IgG anti-αGal, obstructing its detection and highlighting this as a likely general caveat in studies of antibody density and complement deposition. The inherent capacity for complement activation by the purified carbohydrate reactive IgG anti-αGal was similar to that of normal human IgG. We propose that the previously reported complement inhibition by IgG anti-αGal relates to suboptimal assay configurations, in contrast to the complement activating property of the antibodies demonstrated in this paper.


Assuntos
Ativação do Complemento/imunologia , Dissacarídeos/imunologia , Escherichia coli/imunologia , Imunoglobulina G/imunologia , Anticorpos de Domínio Único/imunologia , Streptococcus pneumoniae/imunologia , Agamaglobulinemia/imunologia , Animais , Reações Antígeno-Anticorpo/imunologia , Proteínas do Sistema Complemento/imunologia , Humanos , Suínos
3.
Front Immunol ; 9: 2716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534123

RESUMO

Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Integrina alfaXbeta2 , Células Matadoras Naturais/imunologia , Antígeno de Macrófago 1 , Macrófagos/imunologia , Animais , Humanos , Integrina alfaXbeta2/química , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/imunologia , Relação Estrutura-Atividade
4.
Structure ; 24(12): 2043-2052, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27818100

RESUMO

S100 proteins are calcium-dependent regulators of homeostatic processes. Upon cellular response to stress, and notably during tumorigenesis, they relocalize to the extracellular environment where they induce pro-inflammatory signals by activating the receptor for advanced glycation end products (RAGE), thereby facilitating tumor growth and metastasis. Despite its importance in sustaining inflammation, the structural basis for RAGE-S100 crosstalk is still unknown. Here we report two crystal structures of the RAGE:S100A6 complex encompassing a full-length RAGE ectodomain. The structures, in combination with a comprehensive interaction analysis, suggest that the primary S100A6 binding site is formed by the RAGE C1 domain. Complex formation with S100A6 induces a unique dimeric conformation of RAGE that appears suited for signal transduction and intracellular effector recruitment. Intriguingly, S100A6 adopts a dimeric conformation radically different from all known S100 dimers. We discuss the physiological relevance of this non-canonical homodimeric form in vivo.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína A6 Ligante de Cálcio S100 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...